Antimicrobial Activities of the Endophytic Fungus, Fusarium equiseti, Isolated from The leaves of Ocimum gratissimum
Journal of Advances in Medical and Pharmaceutical Sciences,
Page 11-23
DOI:
10.9734/jamps/2022/v24i730312
Abstract
Introduction: Fungal endophytes of medicinal plants origin are gaining increasing interest as sources of novel bioactive agents with therapeutic capacity. This study was designed to identify and evaluate secondary metabolites isolated from Fusarium equiseti; an endophytic fungus isolated from leaves of Ocimum gratissimum for their antimicrobial potentials.
Methods: The isolation and molecular identification of the endophytic fungus, as well as fermentation, and extraction of secondary metabolites were carried out following standard laboratory procedures. The crude extract was partially purified by partitioning into different fractions using column chromatographic techniques and the fractions were tested for antimicrobial activity. The phytoconstituents in the bioactive fractions were detected by dereplication using High-Performance Liquid Chromatography linked with Diode Array Detection (HPLC-DAD).
Results: Our findings showed that fraction 4 (DCM/ Methanol fraction 95:5) exhibited moderate to strong inhibition against the test micro-organisms namely, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans with MIC values in the range of 0.03 to 1 mg/mL but had no inhibition against Aspergillus niger and Salmonella typhi. The compounds detected in the HPLC assay include Phomoxanthone A, Scalarolide, equisetin, epi-equisetin an episomer of equisetin, Naamine A, Carbonarone A, destruxin B, cytosporin G, and WLIP (β-hydroxydecanoyl-Leu1-D Glu-De-Thr-Dval-DLeu3 DSer-Leu-Dser-Ile). These compounds have been reported to possess antimicrobial activity.
Conclusion: The detection of these metabolites further confirms the potential of the endophytic fungus, Fusarium equiseti isolated from leaves of Ocimum gratissimum as a potential source of bioactive molecules for treatment of infectious diseases.
Keywords:
- Endophytic fungi
- Ocimum gratissimum
- Fusarium equiseti
- secondary metabolites
- antimicrobial
How to Cite
References
World Health Organization. Lack of New Antibiotics Threatens Global E
orts to Contain Drug-Resistant Infections. Available:https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibioticsthreatens- global-e orts-to-contain-drug-resistant-infections (Accessed on 3 March 2022).
Strobel GA, Daisy B, Castillo U, Harper J. Natural Products from Endophytic microorganisms. J. Nat. Prod. 2004;67: 257.
Ebada SS, Eze P, Okoye FBC, Esimone CO, Proksch P. The Fungal Endophyte Nigrospora oryzae Produces Quercetin Monoglycosides Previously Known Only from Plants. Chemistry Select. 2016; 1(11):2767-2771.
Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN, Okoye FBC, Müller WEG, Lin W, Liu Z, Proksch P. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae – Evidence for a metabolic partnership. Fitoterapia. 2015;105:147-150.
Rodriguez R, Redman R. Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA. 2005;102(9):3175–3176.
Available:https://doi.org/10.1073/pnas. 0500367102.
Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell. 2006;18 (4):1052–1066.
Available:https://doi.org/10.1105/tpc.105.039263.
Priyanka C, Shivika S, Vikas S. Ocimum gratissimum: A Review on Ethnomedicinal Properties, Phytochemical Constituents, and Pharmacological Profile. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore; 2018.
Available:https://doi.org/10.1007/978-981-13-0535-1_11
Kin A, Yaki LM, Abubakar I. Olusola LF, Zubairu R. Antibacterial activity of Ocimum gratissimum (scent leaf) on some pathogenic gastrointestinal bacteria. African Journal of Microbiology Research. 2018;12(40):923-929.
Pandey AK, Chowdhury AR. Composition of the essential oil of Ocimum gratissimum grown in Madhya Pradesh. J Med Aromat Plant Sci. 2000;22-23:26-8.
Adebolu TT, Salau AO. Antimicrobial activity of leaf extracts of Ocimum gratissimum on selected diarrhoea causing bacteria in southwestern Nigeria. Afr J Biotech. 2005;4:682-4.
Janine AL, Xisto SP, Orionalda FLF, José RP, Pedro HF, Lúcia KHS, Aline AL, Maria RRS. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem Inst Oswaldo Cruz. 2005;100 55-8.
Vieira RF, Grayer RJ, Paton A, Simon JE, Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochem Syst Ecol. 2001;29:287-304.
Pino BN, Meléndez Leon EM, Stashenko EE. Eugenol and methyl eugenolchemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia. J Chromatogr Sci. 2009;47:800-3.
Okoye FBC, Obonga WO, Onyegbule FA, Ndu OO, Ihekwereme CP. Chemical composition and anti-inflammatory activity of essential oils from the leaves of Ocimum basilicum L. and Ocimum gratissimum L. (Lamiaceae). International Journal of Pharmaceutical Sciences and Research 2014;5(6):2174-2180.
Padalia RC, Verma RS. Comparative volatile oil composition of four Ocimum species from Northern India. Nat Prod Res. 2011;25:569-75.
Chigozie VU, Okezie MU, Ajaegbu EE, Okoye FBC, Esimone CO. Bioactivities and HPLC analysis of secondary metabolites of a morphologically identified endophytic Aspergillus fungus isolated from Mangifera indica, Natural Product Research, Published online; 2021.
DOI: 10.1080/14786419.2021.2021517
Eze PM, Simons V, Seidemann T, Wang L, Kiffe-Delf A-L, Frank M, et al. Serratiochelins A and B from Serratia marcescens show xenosiderophoric characteristics towards Acinetobacter baumannii and Mycobacterium tuberculosis. Tropical Journal of Pharmaceutical Research. 2021;20(12): 2551-2558.
Ujam NT, Ajaghaku DL, Okoye FBC, Esimone CO. Antioxidant and immunosuppressive activities of extracts of endophytic fungi isolated from Psidium guajava and Newbouldia laevis. Phytomedicine Plus. 2021;100028.
Abba CC, Eze PM, Abonyi DO, Nwachukwu CU, Proksch P, Okoye FBC, Eboka CJ. Phenolic Compounds from Endophytic Pseudofusicoccum sp. Isolated from Annona muricate. Tropical Journal of Natural Product Research. 2018;2(7):332-337.
Eze PM, Ojimba NK, Abonyi DO, Chukwunwejim CR, Abba CC, Okoye FBC, Esimone CO. Antimicrobial Activity of Metabolites of an Endophytic Fungus Isolated from the Leaves of Citrus jambhiri (Rutaceae). Trop J Nat Prod Res. 2018; 2(3):145-149.
Akpotu MO, Eze PM, Abba CC, Umeokoli BO, Nwachukwu CU, Okoye FBC, Esimone CO. Antimicrobial activities of secondary metabolites of endophytic fungi isolated from Catharanthus roseus. J Health Sci. 2017;7(1):15-22.
Horn WS, Simmonds M.S.J, Schwartz RE, Blaney WM. Tetrahedron. 1995;51:3969-78.
Izawa Y, Hirose T, Shimizu T, Koyama K, Natori S. Tetrahedron. 1989;45:2323-35.
Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. Journal of Natural Products. 2001;64:1015-1018 .
Miyaoka H, Nishijima S, Mitome H, Yamada Y. Three New Scalarane Sesterterpenoids from the Okinawan Sponge Hyrtios erectus. Journal of Natural Products. 2000;63(10):1369–1372.
Available:https://doi.org/10.1021/np000115g.
Pettit GR, Tan R, Cichacz ZA. Journal of Natural Product. 200;68:1253.
Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW. Antibiotic produced by Fusarium equiseti NRRL 5537. Antimicrobial Agents Chemotherapy. 1974; 5(6);634-9.
PMID: 15825417.
Hazuda D, Blau CU, Felock P, Hastings J, Pramanik B, Wolfe A, et al. Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antiviral Chemical Chemotherapy. 1999;10(2);63-70.
PMID: 10335400.
Burmeister HR, Bennett GA, Vesonder R.F, Hesseltine CW. Antibiotic Produced by Fusarium equiseti NRRL 5537. Antimicrobial Agents and Chemotherapy. June 1974;634-639.
Golo PS, Gardner DR, Grilley MM, Takemoto JY, Krasnoff SB, et al. Production of Destruxins from Metarhizium spp. Fungi in Artificial Medium and in Endophytically Colonized Cowpea Plants. PLOS ONE. 2014;9(8): e104946.
Available:https://doi.org/10.1371/journal.pone.0104946
Berthiller F, Crews C, Dall'Asta C. Masked mycotoxins: A review. Molecular Nutrition and Food Research. 2013;57:165-186.
Wu CC, Chen TH, Liu BL. Destruxin B isolated from entomopathogenic fungus Metarhizium anisopliae induces apoptosis via a Bcl-2 family-dependent mitochondrial pathway in human nonsmall cell lung cancer cells. Evidence Based Complementary Alternative Medicine. 2013;2013:548929.
Hua-Chien Chena, Chen-Kung Choub, Chang-Ming Sunc, Sheau Farn Yeha. Suppressive effects of destruxin B on hepatitis B virus surface antigen gene expression in human hepatoma cells, Journal of Antiviral Research. 1997;34(3): 137-144.
Zhang Yapeng, Tianjiao Zhu, Yuchun Fang, Hongbing Liu, Qianqun Gu, Weiming Zhu Carbonarones A and B, New Bioactive g-Pyrone and a-Pyridone Derivatives from the Marine-derived Fungus Aspergillus carbonarius Journal of Antibiotics. 2007; 60(2):153–157.
Carmely S, Kashman Y. Naamines and naamidines, novel imidazole alkaloids from the calcareous sponge Leucetta chagosensis. Tetrahedron Letters. 1987; 28:3003-3006.
Dunbar DC, Rimoldi JM, Clark AM, Kelly M, Hamann MT. Anti-Cryptococcal and Nitric Oxide Synthase Inhibitory Imidazole Alkaloids from the Calcareous Sponge Leucetta cf chagosensis. Tetrahedron. 2000;56:8795-8798.
Akone S, Amrani M, Lin W, Lai D, Proksch P. Cytosporins F–K, New Epoxyquinols from the Endophytic Fungus Pestalotiopsis theae, Tetrahedron Letters; 2013.
DOI: http://dx.doi.org/ 10.1016/j.tetlet.2013.10.005
Lo Cantore P, Lazzaroni S, Coraiola M, Dalla Serra M, Cafarchia C, et al. Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Molecular plant-microbe interactions: MPMI. 2006;19(10):1113-20 .
-
Abstract View: 36 times
PDF Download: 18 times