An Investigation on the Antiproliferative and Antibacterial Activity of Silver Nanoparticles of Quercus infectoria and Daucus carota subsp sativum

Main Article Content

S. Prathimaa
J. Anbumalarmathi
S. Aruna Sharmili

Abstract

Plant mediated fabrication of nanoparticles and nanomaterials are gaining momentum as it is eco-friendly and cost-effective. In the present study, we synthesis of Silver nanoparticles using aqueous extract of  Quercus infectoria nuts and Daucus carota subsp sativum leaves. The surface plasma resonance at 417 and 450 nm for Q. infectoria and D. carota respectively confirmed the formation of AgNPs. Scanning Electron Microscopic (SEM) confirmed the spherical shape of the nanoparticles, which had an average size of 67.5 nm and 49.2 nm for Q. infectoria nanoparticles (QAgNPs)and D. carota nanoparticles (DAgNPs). The elemental composition by Energy-Dispersive X-ray analysis of the nanoparticle showed an atomic percentage of silver as 73.64 % and 75.93% for Q. infectoria and D. carota.FT- IR analysis of the plant extracts and synthesized silver nanoparticles showed the presence of various functional groups. The total antioxidant activity of QAgNPs was 81.18% and that of DAgNPs was 73.36%. The QAgNPs and DAgNPs exhibited antibacterial activity against B. subtilis, E. coli and S. aureus. The percentage of cell viability for QAgNPs and DAgNPs assessed using HeLa cells was 21.1% and 6% respectively.

Keywords:
Silver nanoparticles, characterization, antibacterial activity, antioxidant activity, cell viability

Article Details

How to Cite
Prathimaa, S., Anbumalarmathi, J., & Sharmili, S. A. (2021). An Investigation on the Antiproliferative and Antibacterial Activity of Silver Nanoparticles of Quercus infectoria and Daucus carota subsp sativum. Journal of Advances in Medical and Pharmaceutical Sciences, 23(2), 33-46. https://doi.org/10.9734/jamps/2021/v23i230221
Section
Original Research Article

References

Singh Chandrashekhar, Kumar Jitendra, Kumar Pradeep, Chauhan Brijesh Singh, Tiwari Kavindra Nath, Mishra Sunil Kumar, et al. Green synthesis of silver nanoparticles using aqueous leaf extract of Premnaintegrifolia(L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnology &Biotechnological Equipment. 2019;33(1):359–371. Francis Sijo, Joseph Siby, Koshy Ebey P, Mathew Beena. Microwave assisted

green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. 2018;46(4):795- 804.

Che W, Xiao Z, Wang Z, Li J, Wang H, Wang Y, et al. Wood-based mesoporous flter decorated with silver nanoparticles for water purification. ACS Sustain Chem Eng. 2019;5.

Halawani EM. Rapid biosynthesis method and characterization of silver nanoparticles using Zizyphus spina christi leaf extract and their antibacterial efficacy in therapeutic application.J Biomater Nanobiotechnol. 2016;8(1):22–35.

X Liu, Bing T, Shangguan D, Microbead-based platform for multiplex detection of DNA and protein.ACS Appl Mater Interf. 2017;9:9462–9469.

Kalaiarasi R, Govindaraj prasannaraj, Venkatachalam perumal. A rapid biological synthesis of silver nanoparticles using leaf broth of rauvolfia tetraphylla and their promising antibacterial activity. Indo American Journal of Pharm Research.2013:3(10).

Bhandari Rohit, Kaur Indu Pal. A Method to Prepare Solid Lipid Nanoparticles with Improved Entrapment Efficiency of Hydrophilic Drugs. Current Nanoscience Volume 9 , Issue 2 , 2013 DOI : 10.2174/1573413711309020008.

Gudadhe JA, Bonde SR, Gaaikwad SC, Gade AK, Rai MK. Phoma glomerata: A novel agent for fabrication of iron oxide nanoparticles. Journal of Bionanosciences. 2011;5:138-142.

Grzegorz Chladek, Anna Mertas, Izabela Barszczewska-Rybarek, Teresa Nalewajek, Jaroslaw Zmudzi, Wojceich Krol, et al. Antifungal activity of denture soft lining material modified by silver nanoparticles- a pilot study.International Journal of Molecular Sciences. 2011;12(7):4735-4744.

Kokura S, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: NBM 2010;6:570-574, doi:10.1016/j.nano.2009.12.002.

Hsiao, S.-H., Wang, H.-M., Chen, W.-J., Lee, T.-M., & Leu, C.-M. (2011). Synthesis and properties of novel triptycene-based polyimides. Journal of Polymer Science Part A: Polymer Chemistry, 49(14), 3109–3120. doi:10.1002/pola.24748.

Menno L. W. Knetsch * and Leo H. Koole.New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340-366; doi:10.3390/polym3010340.

Abdullah, M.; Rafay, M.; Hussain, T.; Ahmad, H.; Tahir, U.; Rasheed, F.; Ruby, T.; Khalil, S., 2017. Nutritive potential and palatability preference of browse foliage by livestock in arid rangelands of Cholistan desert (Pakistan). J. Anim. Plants Sci., 27 (5): 1656-1664.

Osterwalder Neil, Capello Christian, Hungerbuhler Konrad, Stark Wendelin J. Energy consumption during nanoparticles production: How economic is dry synthesis.Journal of Nanoparticle Research. 2006;8(1):1-9.

Baranska M, H Schulz, S Reitzenstein, U Uhlemann, M A Strehle, H Krüger, R Quilitzsch, W Foley, J Popp. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers. 2005 Aug 5;78(5):237-48. doi: 10.1002/bip.20284.

Chahardooli Mahmood, Khodadi Ehsan, Khodadi Ehsaneh. Green synthesis of silver nanoparticles using oak leaf and fruit extracts (Quercus) and its antibacterial activity against plant pathogenic bacteria. International Journal of Biosciences. 2014;4(3):97-103.

Roy, S., Huang, H., Liu, S., Kornberg, T.B. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. 2014 Science 343(6173): 1244624.

Divya A, Anbumalarmathi J, Aruna Sharmili S, Phytochemical analysis, Antimicrobial and Antioxidant Activity of ClitoriaternateaBlue and White Flowered Leaves.Advances in Research. 2018;14(5):1-13.

Pavithra J, Anbumalarmathi J, Aruna Sharmili S.In vitro evaluation of Phytochemical screening, antioxidant, antibacterial activities and characterization of Carissa spinarum synthesized Silver nanoparticles. Biospark International Journal of Innovative Sciences. 2017;2(2):83-88.

Jeniffer Usha F, Aruna Sharmili S, Anbumalarmathi J. Screening the Phytochemical constituents, Antimicrobial and Antioxidant activities of Acacia nilotica, Fucus bengalensis and Thespesia populnea.European Journal of Biomedical and Pharmaceutical Sciences. 2018;5(3):458-463.

Mercy Madhumitha K, Anbumalarmathi J, Aruna Sharmili S, Nandhini G, Shanmuga Priya G. A Comparative Study of in vivo Plant and in vitro Callus Extracts of Centratherum punctatum Cass.Annual Research & Review in Biology. 2020;35(3):1-13.

Audrey Moores and Frédéric Goettmann. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem., 2006,30, 1121-1132

Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess. 2014;1:1–10.

Heydari Rouhollah, Rashidipour Marzieh. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft), Synthesis and In Vitro cytotoxic effect on MCF-7 cells. International Journal of Breast Cancer. 2015;3:11-17.

AlSahi Mohamad S, Dhevanesan Sandhanasamy, Alfuryadi Akram A, Vishnubalaji Radhakrishnan, Murugan A, Munusamy, et al. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. International Journal of Nanomedicine. 2016;11:4439-4449

Saravanakumar Arthanari, Ganesh Mani, Jayaprakash Jayabalan, Murugan Mohankumar. Low- cost and eco- friendly green synthesis of Silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artificial Cells, Nanomedicine and Biotechnology. 2016;1:1-6.

Roy K, Sarkar CK, Ghosh CK.Apium graveolens leaf extract- mediated synthesis of Silver nanoparticles and its activity on pathogenic fungi.Digest Journal of Nanomaterials and Biostructures. 2015;10(2):393-400.

Sridhar Vanga , Mamatha Pingili and Sunitha Tharigoppula. Phytochemical screening and evaluation of antifungal activity of gall extracts of Quercus infectoria . 2013. IJPSR, 2017; Vol. 8(7): 3010-3013.

Tanveer A, Cawood Maria, Iqbal Qumer, Ariño Agustín, Batool Asmat, Rana Muhammad Sabir Tariq, et al. Phytochemicals in Daucus carota and Their Health Benefits. Foods. 2019;8-424:1-21.

Ahmed A, Tayel, Mahmoud A, El-Sedfy, Ahmed I, Ibrahim, Shaaban H. Moussa. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination, RevArgent Microbiol. 2018;50(4):391-397

Faisal NA, Chatha SA, Hussain AI, Ikram M, Bukhari SA. Liaison of phenolic acids and biological activity of escalating cultivars of Daucus carota. International Journal of Food Properties. 2017;20(11):2782-92.

Vorobyova V, Vasyliev G, Skiba M. Eco friendly green synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Applied Nanoscience. 2020;5.

Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, et al. Synthesis of silver nanoparticles using favonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity.Int Nano Lett. 2016;6(3):173–181.

Salem Abid Nabil Ben, Zyed Rouis, Mohamed Ali Lassoued, Nidhal Soualeh Nidhal, Souad Sfar, Mahjoub Aouni. Cytotoxic effect of nanoparticles synthesized from Salvia officinalis L. And Ricinus comunis aqueous extracts against vera cell line and evaluation of their antioxidant activities. African Journal of Biotechnology. 2012;11(52):11530-11534

Mohamed S.Abdel-AzizaMohamed S.Shaheenb Aziza A.El-NekeetycMosaad A.Abdel-Wahhab. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract.2013 Journal of Saudi Chemical Society Volume 18, Issue 4, September 2014, Pages 356-363

Pirtarighat S, Ghannadnia Maryam, Baghshahi Saeid. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry. 2019;9:1– 9.

Hajipour MJ, Fromm KM, Ashkarran AA, de AberasturiDJ, de LarramendiIR, Rojo T, et al. Antibacterial properties of nanoparticles.Trends Biotechnol. 2012;30:499–511.

Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T, Mangrove plant. Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst. 2012;8:1–8.

Veisi Hamed, Hemmati Saba, Shivani Hooman, Veisi Hojat. Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Journal of Applied Organometallic Chemistry. 2015;30(1)387-391.

Ahmed RH, Mustafa DE.Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters. 2020;10:1–14.

Usmani A,Mishra A, Jafri A, Arshad M. Siddiqui MA. Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Curr Nanomater. 2019;5.

Alsalhi M, Devanesan S, Alfuraydi A, Vishnubalaji R, Munusamy MA, Murugan K. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: Antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells, Int J Nanomed.2016; 4.