Future Therapeutic Strategies in the Glaucoma Management

Main Article Content

Waleed K. Abdulsahib

Abstract

Glaucoma is a group of eye diseases in which progressive damage to the ocular nerves may cause retinal ganglion cell (RGC) death. Worldwide glaucoma is a leading cause of avoidable blindness. Intraocular pressure (IOP) is considering to be the main identified cause of danger so far, and lowering intraocular pressure is the only recognized technique for inhibiting disease progression. Furthermore, blood vessels and genetic components of glaucoma are considered additional risk factors. In order to realize the potential progress of glaucoma treatment, new treatment strategies and ambitious goals are constantly being developing. These treatments will provide specific tissue goals to reduce IOP and ensure neuroprotective effects on RGCs. Consequently, physicians can shortly have an expanded range of medical choices to choose from, coupled with therapies that are more successful. Therefore, this study has reviewed the recent studies that were conducted on cellular mechanisms of glaucoma treatment.

Keywords:
Glaucoma, RGCs, intraocular pressure, treatment.

Article Details

How to Cite
Abdulsahib, W. K. (2020). Future Therapeutic Strategies in the Glaucoma Management. Journal of Advances in Medical and Pharmaceutical Sciences, 22(7), 40-49. https://doi.org/10.9734/jamps/2020/v22i730184
Section
Review Article

References

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081–90.

Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology. 2013;120(12): 2377–84.

Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuro-enhancement. Ophthalmology. 2012; 119(5):979–86.

Germano RAS, Finzi S, Challa P, Susanna Junior R. Rho kinase inhibitors for glaucoma treatment-Review. Arq Bras Oftalmol. 2015;78(6):388–91.

Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res. 2000;19(3):271–95.

Beidoe G, Mousa SA. Current primary open-angle glaucoma treatments and future directions. Clin Ophthalmol (Auckland, NZ). 2012;6:1699.

Tanna AP, Lin AB. Medical therapy for glaucoma: what to add after a prostaglandin analogs? Curr Opin Ophthalmol. 2015;26(2):116–20.

Vaajanen A, Vapaatalo H. Local ocular renin–angiotensin system–a target for glaucoma therapy? Basic Clin Pharmacol Toxicol. 2011;109(4):217–24.

Aliancy J, Stamer WD, Wirostko B. A review of nitric oxide for the treatment of glaucomatous disease. Ophthalmol Ther. 2017;6(2):221–32.

Verkman AS. Role of aquaporin water channels in eye function. Exp Eye Res. 2003;76(2):137–43.

Chang JYH, Stamer WD, Bertrand J, Read AT, Marando CM, Ethier CR, et al. Role of nitric oxide in murine conventional outflow physiology. Am J Physiol Physiol. 2015; 309(4):C205–14.

Nathanson JA. Direct application of a guanylate cyclase activator lowers intraocular pressure. Eur J Pharmacol. 1988;147(1):155–6.

Dismuke WM, Sharif NA, Ellis DZ. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58- 2667 involves the BKCa ion channel. Invest Ophthalmol Vis Sci. 2009;50(7): 3353–9.

Heyne GW, Kiland JA, Kaufman PL, B’Ann TG. Effect of nitric oxide on anterior segment physiology in monkeys. Invest Ophthalmol Vis Sci. 2013;54(7):5103– 10.

Kotikoski H, Vapaatalo H, Oksala O. Nitric oxide and cyclic GMP enhance aqueous humor outflow facility in rabbits. Curr Eye Res. 2003;26(2):119–23.

Kee C, Kaufman PL, Gabelt BT. Effect of 8-Br cGMP on aqueous humor dynamics in monkeys. Invest Ophthalmol Vis Sci. 1994;35(6):2769– 73.

Zimmerman AL, Yamanaka G, Eckstein F, Baylor DA, Stryer L. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proc Natl Acad Sci. 1985;82(24):8813–7.

Ghosh S. Freitag AC, Martin-Vasallo P, and Coca-Prados M. Cell Distrib Differ gene Expr three alpha subunit isoforms Na, K-ATPase Ocul ciliary Ep J Biol Chem. 1990;265:2935–40.

Wareham LK, Buys ES, Sappington RM. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide. 2018;77:75–87.

Supuran CT, Mastrolorenzo A, Barbaro G, Scozzafava A. Phosphodiesterase 5 inhibitors-drug design and differentiation based on selectivity, pharmacokinetic and efficacy profiles. Curr Pharm Des. 2006; 12(27):3459–65.

Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D. Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol. 2003;160(5):719–27.

Abdulsahib WK, Al-Zubaidy A, Sahib HB, Kathem SH. Tolerable ocular hypotensive effect of topically applied sildenafil in ocular in normotensive and betamethasone-induced hypertensive rabbits. Int J Pharm Sci Rev Res. 2015;35(1).

McLaughlin CW, Peart D, Purves RD, Carré DA, Peterson-Yantorno K, Mitchell CH, et al. Timolol may inhibit aqueous humor secretion by cAMP-independent action on ciliary epithelial cells. Am J Physiol Physiol. 2001;281(3):C865–75.

Samuelsson-Almén M, Nilsson SFE, Mäepea O, Bill A. Effects of atrial natriuretic factor (ANF) on intraocular pressure and aqueous humor flow in the cynomolgus monkey. Exp Eye Res. 1991;53(2):253–60.

Kleineller A, Fambrough DM, Benos DJ, Civan MM. The Eye’s Aqueous Humor: From Secretion to Glaucoma. Academic Press; 1997.

Ellis DZ, Nathanson JA, Sweadner KJ. Carbachol inhibits Na+-K+-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Physiol. 2000;279(6):C1685– 93.

Sweadner KJ. Isozymes of the na+/K+-AtPase. Biochim Biophys Acta (BBA)-Reviews Biomembr. 1989;988(2):185– 220.

Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules [Internet]. 2017;22(6):990.

Available:https://pubmed.ncbi.nlm.nih.gov/28613263

Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, et al. Digoxin derivatives with enhanced selectivity for the α2 isoform of Na, K-ATPase effects on intraocular pressure in rabbits. J Biol Chem. 2014;289(30):21153–62.

Socci RR, Chu E, Bayorh MA, Chu T-C. 4-aminopyridine transiently increases intraocular pressure in rabbits. Pharmacology. 2003;69(2):108–14.

Abdulsahib WK, Abood SJ. Effect of digoxin ophthalmic solutions on the intraocular pressure in rabbits.

Simon KA, Bonting SL, Hawkins NM. Studies on sodium-potassium-activated adenosine triphosphatase: II. Formation of aqueous humour. Exp Eye Res. 1962; 1(3):253–61.

Delamere NA, Socci RR, King KL, Bhattacherjee P. The influence of 12 (R)-hydroxyeicosatetraenoic acid on ciliary epithelial sodium, potassium-adenosine triphosphatase activity and intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci. 1991;32(9):2511–4.

Jung J, Yoon T, Choi EC, Lee K. Interaction of cofilin with triose-phosphate isomerase contributes glycolytic fuel for Na, K-ATPase via Rho-mediated signaling pathway. J Biol Chem. 2002;277(50): 48931–7.

Kathem SH, Nauli SM. Mechanosensory function of Cav1. 2 calcium channel in renal primary cilia. FASEB J. 2016; 30(1_Supplement):1183–8.

Fadheel OQ, Al-Jawad FH, Abdulsahib WK, Ghazi HF. Effect of Felodipine against Pilocarpine induced Seizures in Rats. Int J Pharm Sci Rev Res. 2018;52:54–60.

Shayegan MR, Boloorian AA, Kianoush S. Comparative study of topical application of timolol and verapamil in patients with glaucoma within 6 months. J Ocul Pharmacol Ther. 2009;25(6):551–4.

Santafe J, Jesu M, Segarra J, Melena J. A long-lasting hypotensive effect of topical diltiazem on the intraocular pressure in conscious rabbits. Naunyn Schmiedebergs Arch Pharmacol. 1997; 355(5):645–50.

Melena J, Santafé J, Segarra J. The effect of topical diltiazem on the intraocular pressure in betamethasone-induced ocular hypertensive rabbits. J Pharmacol Exp Ther. 1998;284(1):278– 82.

Santafé J, de Ibarreta MJM, Segarra J, Melena J. The effect of topical diltiazem on ocular hypertension induced by water loading in rabbits. Gen Pharmacol Vasc Syst. 1999;32(2):201– 5.

Siegner SW, Netland PA, Schroeder A, Erickson KA. Effect of calcium channel blockers alone and in combination with antiglaucoma medications on intraocular pressure in the primate eye. J Glaucoma. 2000;9(4):334–9.

Erickson KA, Schroeder A, Netland PA. Verapamil increases outflow facility in the human eye. Exp Eye Res. 1995;61(5): 565–7.

Abreu MM, Kim YY, Shin DH, Netland PA. Topical verapamil and episcleral venous pressure. Ophthalmology. 1998;105(12): 2251–5.

Netland PA, Grosskreutz CL, Feke GT, Hart LJ. Color Doppler ultrasound analysis of ocular circulation after topical calcium channel blocker. Am J Ophthalmol. 1995;119(6):694–700.

Goyal JK, Khilnani G, Sharma DP, Singh J. The hypotensive effect of verapamil eye drops on ocular hypertension. Indian J Ophthalmol. 1989;37(4):176.

Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of topical calcium channel blockers on intraocular pressure in steroid-induced glaucoma. J Curr glaucoma Pract. 2014;8(1):15.

Abdulsahib WK, Fadhil OQ, Tizkam HH. Effect of topically applied nimodipine on the intraocular pressure on ocular normotensive and betamethasone- induced hypertensive eyes in rabbits. Int J Res Pharm Sci. 2019 Oct 1;10(4):2727–32.

Maltese A, Bucolo C. Pharmacokinetic profile of topical flunarizine in rabbit eye and plasma. J Ocul Pharmacol Ther. 2003;19(2):171–9.

Wang R-F, Gagliuso DJ, Podos SM. Effect of flunarizine, a calcium channel blocker, on intraocular pressure and aqueous humor dynamics in monkeys. J Glaucoma. 2008;17(1):73–8.

Osborne NN, Wood JPM, Cupido A, Melena J, Chidlow G. Topical flunarizine reduces IOP and protects the retina against ischemia-excitotoxicity. Invest Ophthalmol Vis Sci. 2002;43(5):1456–64.

Mito T, Delamere NA, Coca-Prados M. Calcium-dependent regulation of cation transport in cultured human nonpigmented ciliary epithelial cells. Am J Physiol Physiol. 1993;264(3):C519–26.

Fyhrquist F, Metsärinne K, Tikkanen I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J Hum Hypertens. 1995;9:S19-24.

Ferreira AJ, Raizada MK. Are we poised to target ACE2 for the next generation of antihypertensives? J Mol Med. 2008;86(6):685.

Cullinane AB, Leung PS, Ortego J, Coca-Prados M, Harvey BJ. Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. Br J Ophthalmol. 2002;86(6):676–83.

Vaajanen A. Expression and function of angiotensins in the regulation of intraocular pressure-an experimental study. 2009;

Vaajanen A, Vapaatalo H, Kautiainen H, Oksala O. Angiotensin (1-7) reduces intraocular pressure in the normotensive rabbit eye. Invest Ophthalmol Vis Sci. 2008;49(6):2557–62.

Mehta A, Iyer L, Parmar S, Shah G, Goyal R. Oculohypotensive effect of perindopril in acute and chronic models of glaucoma in rabbits. Can J Physiol Pharmacol. 2010;88(5):595–600.

Costagliola C, Verolino M, De Rosa ML, Iaccarino G, Ciancaglini M, Mastropasqua L. Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects. Exp Eye Res. 2000;71(2):167–71.

Quigley HA, Pitha IF, Welsbie DS, Nguyen C, Steinhart MR, Nguyen TD, et al. Losartan treatment protects retinal ganglion cells and alters scleral remodeling in experimental glaucoma. PLoS One. 2015;10(10).

Mohammed QH, Haitham K, Waleed KA. Effect of Telmisartan on Intra-Ocular Pressure in induced Open Angle Glaucoma in Rabbits. Int J Sci Res. 2017;6(10):1656–9.

Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin–angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014;5(7): e1333–e1333.

Kida T, Ikeda T, Nishimura M, Sugiyama T, Imamura Y, Sotozono C, et al. Renin-angiotensin system in proliferative diabetic retinopathy and its gene expression in cultured human Müller cells. Jpn J Ophthalmol. 2003;47(1):36–41.