Exploring the Possible Role of Nature in Curing Leishmaniasis

Main Article Content

Ravinder Sharma
Vikas Gupta
Viney Chawla
Pooja Chawla


Background: Communicable diseases have always been a threat to mankind since times immemorial. Leishmaniasis, an infectious disease caused by protozoan of various species of leishmania, is a major health problem spreading across 98 countries and about 350 million people stand the risk of this infection worldwide. Medical research has struggled a lot to combat this disease.

Objective: Among the various approaches available for treatment of Leishmaniasis, many are costly so there is a need to develop effective but economical and easily available antileishmanial agents.

Methods: Natural products are important source of various new medicaments and their derivatives can be used for synthetic modification and bioactivity optimization. Therefore, in order to fulfil the need for novel, economical, more effective and safer chemotherapeutic agents, scientists have explored Mother Nature in detail.

Results: A number of plant species possess inhibitory activity against certain types of parasites such as Leishmania major, Leishmania amazonensis, Leishmania aethiopica, Leishmania braziliensis, Leishmania mexicana, Leishmania infantum, Leishmania chagasi and Leishmania donovani. Moreover natural products are economical, safer, more effective and without considerable side effects.

Conclusion: The present review highlights the leishmanicidal activity of various natural products with an insight in to their possible mechanism.

Protozoan, leishmaniasis, chemotherapeutic agents, natural products, infection

Article Details

How to Cite
Sharma, R., Gupta, V., Chawla, V., & Chawla, P. (2019). Exploring the Possible Role of Nature in Curing Leishmaniasis. Journal of Advances in Medical and Pharmaceutical Sciences, 20(3), 1-21. https://doi.org/10.9734/jamps/2019/v20i330114
Review Article


Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891): 970-974.

Desjeux P. Leishmaniasis: Current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases. 2004;27(5):305-318.

Rodrigues RF, Da Silva EF, Echevarria A, Fajardo-Bonin R, Amaral VF, Leon LL, et al. A comparative study of mesoionic compounds in Leishmania sp. and toxicity evaluation. European Journal of Medicinal Chemistry. 2007;42(7):1039-1043.

Lodge R, Descoteaux A. Modulation of phagolysosome biogenesis by the lipophosphoglycan of Leishmania. Clinical Immunology. 2005;114(3):256-265.

Nekouie H, Assmar M, Razavi MR, Naddaf SR. A study on Leishmania infection rate among Phlebotomus spp. collected from Abardejh district, Iran. Iranian Journal of Veterinary Research. 2006;7(4):77-81.

Turco SJ, Orlandi PA, Homans SW, Ferguson M, Dwek RA, Rademacher TW. Structure of the phosphosaccharide-inositol core of the Leishmania donovani lipophosphoglycan. Journal of Biological Chemistry. 1989;264(12):6711-6715.

Desjeux P, World Health Organization. Information on the epidemiology and control of the leishmaniases by country or territory; 1991.

Abreu-Silva AL, Calabrese KS, Tedesco RC, Mortara RA, da Costa SG. Central nervous system involvement in experimental infection with Leishmania (Leishmania) amazonensis. The American Journal of Tropical Medicine and Hygiene. 2003;68(6):661-665.

Carswell J. Kala-Azar at Kitui. East African Medical Journal. 1953;30(7):287-293.

Kubba R, El‐Hassan AM, Al‐Gindan Y, Omer AH, Bushra M, Kutty MK. Peripheral nerve involvement in cutaneous leishmaniasis (Old World). International Journal of Dermatology. 1987;26(8):527-531.

Velez ID, Hendrickx E, Robledo SM, Agudelo SD. Gender and cutaneous leishmaniasis in Colombia. Cadernos De Saude Publica. 2001;17(1):171-180.

Neris PL, Caldas JP, Rodrigues YK, Amorim FM, Leite JA, Rodrigues-Mascarenhas S, et al. Neolignan Licarin A presents effect against Leishmania (Leishmania) major associated with immunomodulation in vitro. Experimental Parasitology. 2013;135(2):307-313.

Liese J, Schleicher U, Bogdan C. The innate immune response against Leishmania parasites. Immunobiology. 2008;213(3-4):377-387.

Rees PH, Kager PA. Visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Academis Press; 1987.

Motazedian MH, MEHRBANI D, Oryan A, Asgari G, Karamian M, Kalantari M. Life cycle of cutaneous leishmaniasis in Larestan, southern Iran. 2006;1(3):137-143.

Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. International Journal for Parasitology. 2003;33(10):1027-34.

Alviano DS, Barreto AL, Dias FD, Rodrigues ID, Rosa MD, Alviano CS, et al. Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Frontiers in Microbiology. 2012;3:283.

Aslan H, Dey R, Meneses C, Castrovinci P, Jeronimo SM, Oliva G, et al. A new model of progressive visceral leishmaniasis in hamsters by natural transmission via bites of vector sand flies. The Journal of Infectious Diseases. 2013; 207(8):1328-1338.

Mishra BB, Singh RK, Srivastava A, Tripathi VJ, Tiwari VK. Fighting against leishmaniasis: Search of alkaloids as future true potential anti-leishmanial agents. Mini Reviews in Medicinal Chemistry. 2009;9(1):107-123.

Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clinical Microbiology Reviews. 2013;26(1):58-85.

Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000 Research. 2017;6:750.

Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. The Lancet Infectious Diseases. 2007;7(9):581-596.

Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: The relevance of parasite multiplication and pathoantigenicity. Acta Tropica. 2003;85(3):375-390.

Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected diseases: A deficient market and a public-health policy failure. The Lancet. 2002;359(9324):2188-94.

Pedrique B, Strub WN, Some C, Olliaro P, Trouiller P, Ford N, et al. The drug and vaccine landscape for neglected diseases (2000–11): A systematic assessment. The Lancet Global Health. 2013;1(6):e371-e379.

Pena I, Manzano MP, Cantizani J, Kessler A, Alonso-Padilla J, Bardera AI, et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: An open resource. Scientific Reports. 2015;5(8771): 1-12.

Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016;537(7619):229-233.

Croft SL, Barrett MP, Urbina JA. Chemotherapy of trypanosomiases and leishmaniasis. Trends in Parasitology. 2005;21(11):508-512.

Natera S, Machuca C, Padrón-Nieves M, Romero A, Díaz E, Ponte-Sucre A. Leishmania spp.: Proficiency of drug-resistant parasites. International Journal of Antimicrobial Agents. 2007;29(6):637-642.

Sane SA, Shakya N, Gupta S. Immunomodulatory effect of picroliv on the efficacy of paromomycin and miltefosine in combination in experimental visceral leishmaniasis. Experimental Parasitology. 2011;127(2):376-381.

Jain K. and Jain NK. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discovery Today. 2013;18(23-24):1272-1281.

Van Griensven J, Zijlstra EE, Hailu A. Visceral leishmaniasis and HIV coinfection: time for concerted action. PLoS Neglected Tropical Diseases. 2014;8(8):e3023.

Kale M, Patwardhan K. Synthesis of heterocyclic scaffolds with anti-hyperlipidemic potential: A review. Der Pharma Chemica. 2013;5(5):213-222.

Fernandez-Guerrero ML, Robles P, Rivas P, Mójer F, Muniz G, de Gorgolas M. Visceral leishmaniasis in immune compromised patients with and without AIDS: A comparison of clinical features and prognosis. Acta Tropica. 2004;90(1): 11-16.

Carnauba Jr D, Konishi CT, Petri V, Martinez IC, Shimizu L, Pereira-Chioccola VL. Atypical disseminated leishmaniasis similar to post-kala-azar dermal leishmaniasis in a Brazilian AIDS patient infected with Leishmania (Leishmania) infantum chagasi: A case report. International Journal of Infectious Diseases. 2009;13(6):e504-e507.

Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clinical Microbiology Reviews. 2006;19(1):111-126.

Iwu MM, Jackson JE, Schuster BG. Medicinal plants in the fight against leishmaniasis. Parasitology Today. 1994; 10(2):65-68.

Fournet A, Barrios AA, Munoz V. Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. Journal of Ethnopharmacology. 1994;41(1-2):19-37.

Bahmani M, Saki K, Ezatpour B, Shahsavari S, Eftekhari Z, Jelodari M, et al. Leishmaniosis phytotherapy: Review of plants used in Iranian traditional medicine on leishmaniasis. Asian Pacific Journal of Tropical Biomedicine. 2015;5(9):695-701.

Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, et al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence-Based Complementary and Alternative Medicine. 2014;2014:1-20.

Rocha LG, Almeida JR, Macedo RO, Barbosa-Filho JM. A review of natural products with antileishmanial activity. Phytomedicine. 2005;12(6-7):514-535.

Wang J, Peng Q, Guoyu G. New compounds of natural resources in 2008. African Journal of Biotechnology. 2009; 8(18). 4299-4307

Rates SM. Plants as source of drugs. Toxicon. 2001;39(5):603-613.

Brito AM, dos Santos D, Rodrigues SA, Brito RG, Xavier-Filho L. Plants with anti-Leishmania activity: Integrative review from 2000 to 2011. Pharmacognosy Reviews. 2013;7(13):34-41.

Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, et al. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance. 2017;7(1): 1-11.

Yamamoto ES, Campos BL, Laurenti MD, Lago JH, dos Santos Grecco S, Corbett CE, et al. Treatment with triterpenic fraction purified from Baccharis uncinella leaves inhibits Leishmania (Leishmania) amazonensis spreading and improves Th1 immune response in infected mice. Parasitology Research. 2014;113(1):333-339.

Jesus JA, Lago JH, Laurenti MD, Yamamoto ES, Passero LF. Antimicrobial activity of oleanolic and ursolic acids: an update. Evidence-Based Complementary and Alternative Medicine. 2015;1-14.

Rossi D, Ahmed KM, Gaggeri R, Della Volpe S, Maggi L, Mazzeo G et al. (R)-(−)-Aloesaponol III 8-Methyl Ether from Eremurus persicus: A novel compound against leishmaniosis. Molecules. 2017; 22(4):519.

Li C, Shi JG, Zhang YP, Zhang CZ. . Constituents of Eremurus chinensis. Journal of Natural Products. 2000;63(5): 653-656.

Singh CB, Chanu SB, Kh L, Swapana N, Cantrell C, Ross SA. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) Smith. Journal of Pharmacognosy and Phytochemistry 2014; 3(3):130-133.

Mukherjee D, Singh CB, Dey S, Mandal S, Ghosh J, Mallick S, et al. Induction of apoptosis by zerumbone isolated from Zingiber zerumbet (L.) Smith in protozoan parasite Leishmania donovani due to oxidative stress. Brazilian Journal of Infectious Diseases. 2016;20(1):48-55.

Metwally DM, Al-Olayan EM, El-Khadragy MF, Alkathiri B. Anti-leishmanial activity (in vitro and in vivo) of allicin and allicin cream using Leishmania major (Sub-strain Zymowme LON4) and BALB/c mice. PloS One. 2016;11(8):e0161296.

Corral-Caridad MJ, Moreno I, Toraño A, Domínguez M, Alunda JM. Effect of allicin on promastigotes and intracellular amastigotes of Leishmania donovani and L. infantum. Experimental Parasitology. 2012;132(4):475-482.

Kyriazis ID, Koutsoni OS, Aligiannis N, Karampetsou K, Skaltsounis AL, Dotsika E. The leishmanicidal activity of oleuropein is selectively regulated through inflammation-and oxidative stress-related genes. Parasites & Vectors. 2016;9(1):441.

Kyriazis JD, Aligiannis N, Polychronopoulos P, Skaltsounis AL, Dotsika E. Leishmanicidal activity assessment of olive tree extracts. Phytomedicine. 2013;20(3-4):275-81.

Amoa-Bosompem M, Ohashi M, Mosore MT, Agyapong J, Tung NH, Kwofie KD, et al. In vitro anti-Leishmania activity of tetracyclic iridoids from Morinda lucida, benth. Tropical Medicine and Health. 2016;44(1):25.

Kwofie KD, Tung NH, Suzuki-Ohashi M, Amoa-Bosompem M, Adegle R, Sakyiamah MM, et al. In-vitro anti-trypanosomal activities and mechanisms of action of novel tetracyclic iridoids from Morinda lucida Benth. Antimicrobial Agents and Chemotherapy. 2016;60(6):3283-3290.

Amin E, Moawad A, Hassan H. Biologically-guided isolation of leishmanicidal secondary metabolites from Euphorbia peplus L. Saudi Pharmaceutical Journal. 2017;25(2):236-240.

Hemmers H, Gülz PG, Marner FJ. Triterpenoids in epicuticular waxes of three European Euphorbia species. Zeitschrift für Naturforschung C. 1988;43(11-12):799-805.

Kermani EK, Sajjadi SE, Hejazi SH, Arjmand R, Saberi S, Eskandarian AA. Anti-Leishmania activity of osthole. Pharmacognosy Research. 2016;8(5):1-4.

Mandlik V, Patil S, Bopanna R, Basu S, Singh S. Biological activity of coumarin derivatives as anti-leishmanial agents. PloS One. 2016;11(10):e0164585.

Khan FA, Maalik A, Iqbal Z, Malik I. Recent pharmacological developments in β-carboline alkaloid “harmaline”. European Journal of Pharmacology. 2013;721(1-3): 391-394.

Di Giorgio C, Delmas F, Ollivier E, Elias R, Balansard G, Timon-David P. In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Experimental Parasitology. 2004; 106(3-4):67-74.

Ghaffarifar F, Heydari FE, Dalimi A, Hassan ZM, Delavari M, Mikaeiloo H. Evaluation of apoptotic and antileishmanial activities of Artemisinin on promastigotes and BALB/C mice infected with Leishmania major. Iranian Journal of Parasitology. 2015; 10(2):258-267.

Sen R, Ganguly S, Saha P, Chatterjee M. Efficacy of artemisinin in experimental visceral leishmaniasis. International Journal of Antimicrobial Agents. 2010; 36(1):43-49.

Sen R, Saha P, Sarkar A, Ganguly S, Chatterjee M. Iron enhances generation of free radicals by Artemisinin causing a caspase-independent, apoptotic death in Leishmania donovani promastigotes. Free Radical Research. 2010;44(11):1289-1295.

Garcia FP, Lazarin-Bidóia D, Ueda-Nakamura T, Silva SD, Nakamura CV. Eupomatenoid-5 isolated from leaves of Piper regnellii induces apoptosis in Leishmania amazonensis. Evidence-Based Complementary and Alternative Medicine. 2013; 2013:1-11.

Vendrametto MC, Dos Santos AO, Nakamura CV, Dias Filho BP, Cortez DA, Ueda-Nakamura T. Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens. Parasitology International. 2010;59(2):154-158.

Mishra BB, Gour JK, Kishore N, Singh RK, Tripathi V, Tiwari VK. An antileishmanial prenyloxy-naphthoquinone from roots of Plumbago zeylanica. Natural Product Research. 2013;27(4-5):480-485.

Kishore N, Mishra BB, Tiwari VK, Tripathi V. A novel naphthoquinone from Plumbago zeylanica roots. Chemistry of Natural Compounds. 2010;46(4):517-519.

Kropf P, Freudenberg MA, Modolell M, Price HP, Herath S, Antoniazi S, et al. Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infection and Immunity. 2004;72(4):1920-1928.

Flandin JF, Chano F, Descoteaux A. RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon–γ‐primed macrophages. European Journal of Immunology. 2006;36(2):411-420.

Traub-Cseko YM, Almeida RW, Boukai LK, Costa-Pinto D, Duboise SM, MacMahon-Pratt D. Cysteine proteinases of Leishmania. Ciênc. cult. (Säo Paulo). 1993;45(5):339-342.

Ueda-Nakamura T, Attias M, de Souza W. Megasome biogenesis in Leishmania amazonensis: A morphometric and cytochemical study. Parasitology Research. 2001;87(2):89-97.

McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiology and Molecular Biology Reviews. 2002; 66(1):122-54.

Cirne-Santos CC, Souza TM, Teixeira VL, Fontes CF, Rebello MA, Castello-Branco LR, et al. The dolabellane diterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Research. 2008;77(1):64-71.

Calegari-Silva TC, Pereira RM, De-Melo LD, Saraiva EM, Soares DC, Bellio M, et al. NF-κB-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection. Immunology Letters. 2009;127(1):19-26.

Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, Sacks D. IL-10 and TGF-β control the establishment of persistent and transmissible infections produced by Leishmania tropica in C57BL/6 mice. The Journal of Immunology. 2008;180(6):4090-4097.

Lage PS, de Andrade PH, Lopes AD, Chávez Fumagalli MA, Valadares DG, Duarte MC, et al. Strychnos pseudoquina and its purified compounds present an effective in vitro antileishmanial activity. Evidence-Based Complementary and Alternative Medicine. 2013;2013:1-9.

Lage PS, Chávez-Fumagalli MA, Mesquita JT, Mata LM, Fernandes SO, Cardoso VN, et al. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitology Research. 2015;114(12):4625-4635.

Iranshahi M, Arfa P, Ramezani M, Jaafari MR, Sadeghian H, Bassarello C, et al. Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry. 2007; 68(4):554-561.

Napolitano HB, Silva M, Ellena J, Rodrigues BD, Almeida AL, Vieira PC, et al. Aurapten, a coumarin with growth inhibition against Leishmania major promastigotes. Brazilian Journal of Medical and Biological Research. 2004;37(12): 1847-1852.

Mandlik V, Patil S, Bopanna R, Basu S, Singh S. Biological activity of coumarin derivatives as anti-leishmanial agents. PloS One. 2016;11(10):e0164585.

Chowdhury SR, Kumar A, Godinho JL, Silva ST, Zuma AA, Saha S, et al. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochemical Pharmacology. 2017;138:19-30.

Salama IC, Arrais-Lima C, Arrais-Silva WW. Evaluation of boldine activity against intracellular amastigotes of Leishmania amazonensis. The Korean Journal of Parasitology. 2017;55(3):337.

Mukhtar MR, Aziz AN, Thomas NF, Hadi AH, Litaudon M, Awang K. A new proaporphine alkaloid from the bark of Phoebe grandis. Molecules. 2009;14(3): 1227-1233.

Martín‐Quintal Z, Mut‐Martín M, Matus‐Moo A, Torres‐Tapia LW, Peraza‐Sánchez SR. The leishmanicidal effect of (3S)‐16, 17‐didehydrofalcarinol, an oxylipin isolated from Tridex procumbens, is independent of NO production. Phytotherapy Research. 2010; 24(7):1004-1008.

Robledo SM, Cardona W, Ligardo K, Henao J, Arbelaez N, Montoya A, et al. Antileishmanial Effect of 5, 3′-Hydroxy-7, 4′-dimethoxyflavanone of Picramnia gracilis Tul. (Picramniaceae) Fruit: In vitro and in vivo studies. Advances in Pharmacological Sciences. 2015;2015:1-8.

Oubada A, García M, Bello-Alarcon A, Cuesta-Rubio O, Monzote L. Antileishmanial activity of leaf extract from Calophyllum rivulare against Leishmania amazonensis. Emirates Journal of Food and Agriculture. 2014;26(9):807-812.

Rizk YS, Fischer A, Cunha MD, Rodrigues PO, Marques MC, Matos MD, et al. In vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Memórias do Instituto Oswaldo Cruz. 2014;109(8):1050-1056.

Islamuddin M, Sahal D, Afrin F. Apoptosis-like death in Leishmania donovani promastigotes induced by eugenol-rich oil of Syzygium aromaticum. Journal of Medical Microbiology. 2014;63(1):74-85.

Delorenzi JC, Attias M, Gattass CR, Andrade M, Rezende C, da Cunha Pinto Â, et al. Antileishmanial activity of an indole alkaloid Frompeschiera australis. Antimicrobial Agents and Chemotherapy. 2001;45(5):1349-1354.

Delorenzi JC, Freire-de-Lima L, Gattass CR, de Andrade Costa D, He L, Kuehne ME, Saraiva EM. In vitro activities of iboga alkaloid congeners coronaridine and 18-methoxycoronaridine against Leishmania amazonensis. Antimicrobial Agents and Chemotherapy. 2002;46(7):2111-2115.

Arango V, Robledo S, Seon-Meniel B, Figadere B, Cardona W, Saez J, et al Coumarins from Galipea panamensis and their activity against Leishmania panamensis. Journal of Natural Products. 2010;73(5):1012-1014.

de Castro Oliveira LG, Brito LM, de Moraes Alves MM, Amorim LV, Sobrinho‐Júnior EP, et al. In vitro effects of the neolignan 2, 3‐Dihydrobenzofuran against Leishmania amazonensis. Basic & Clinical Pharmacology & Toxicology. 2017; 120(1):52-58.

Nascimento IR, Lopes LM. 2, 3-Dihydrobenzofuran neolignans from Aristolochia pubescens. Phytochemistry. 1999;52(2):345-350.

Dagnino AP, Mesquita CS, Dorneles GP, Teixeira VD, de Barros FM, Ccana-Ccapatinta GV, et al. Phloroglucinol derivatives from Hypericum species trigger mitochondrial dysfunction in Leishmania amazonensis. Parasitology. 2018;145(9): 1199-1209.

Dagnino AP, de Barros FM, Ccana-Ccapatinta GV, Prophiro JS, von Poser GL, Romão PR. Leishmanicidal activity of lipophilic extracts of some Hypericum species. Phytomedicine. 2015;22(1):71-76.

Guimarães LR, Rodrigues AP, Marinho PS, et al. Activity of the julocrotine, a glutarimide alkaloid from Croton pullei var. glabrior, on Leishmania (L.) amazonensis. Parasitology Research. 2010;107(5):1075-1081.

Peixoto RN, Guilhon G, das Graças B Zoghbi M, Araújo IS, Uetanabaro AP, et al. Volatiles, a glutarimide alkaloid and antimicrobial effects of Croton pullei (Euphorbiaceae). Molecules. 2013;18(3): 3195-3205.

Castillo D, Arevalo J, Herrera F, Ruiz C, Rojas R, Rengifo E, et al. Spirolactone iridoids might be responsible for the antileishmanial activity of a Peruvian traditional remedy made with Himatanthus sucuuba (Apocynaceae). Journal of Ethnopharmacology. 2007;112(2):410-414.

Meyre-Silva C, Niero R, Mariano B, Nathália L, Gomes do Nascimento F, Vicente Farias I, et al. Evaluation of antileishmanial activity of selected Brazilian plants and identification of the active principles. Evidence-Based Complementary and Alternative Medicine. 2013;1-7.

Ferreira C, Soares DC, do Nascimento MT, Pinto-da-Silva LH, Sarzedas CG, Tinoco LW, et al. Resveratrol is active against Leishmania amazonensis: In vitro effect of its association with amphotericin B. Antimicrobial Agents and Chemotherapy. 2014;58(10):6197-208.

Kedzierski L, Curtis JM, Kaminska M, Jodynis-Liebert J, Murias M. In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes. Parasitology Research. 2007;102(1):91-97.

Lucas IK, Kolodziej H. In vitro antileishmanial activity of resveratrol originates from its cytotoxic potential against host cells. Planta Medica. 2013;79(01):20-26.