Highly Active Antiretroviral Therapy Depletes Some Antioxidant Parameters and Increases Free Radical Generation in Drosophila melanogaster

Main Article Content

Walter Mdekera Iorjiim
Simeon Omale
Great David Bagu
Steven Samuel Gyang
Emmanuel Taiwo Alemika
Monday Alexander Etuh

Abstract

Objective: This study intended to evaluate the toxic effects of Efavirenz-based highly active antiretroviral therapy (EFVb-HAART) on some antioxidant parameters, and free radical generation in D. melanogaster.

Materials and Methods: The study was carried out at the Centre of Excellence in phytomedicine Research and Development (ACEPRD), University of Jos, Nigeria, in 2019. Sixty (60)                        D. melanogaster (both sexes) 1-4 days old were exposed by ingestion to graded concentrations of EFVb-HAART (93.11 mg, 46.56 mg, 23.28 mg, 11.64 mg) or 1000 mL distilled water (control) each per 10 g fly food for five days. All concentrations were diluted with 1000 mL distilled water and incorporated in cold fly food in five replicates. Treated flies were anesthetized under ice, homogenized, centrifuged, and the supernatant used to assay for Total protein, Total thiol, Glutathione-S-transferase, Catalase, Superoxide dismutase, and Malondialdehyde levels. Statistical significance was accepted at P< 0.05.

Results: The result showed significantly (P<0.05) increased total protein (1.05±0.0 - 1.34±0.12 Vs. 0.56±0.14 mg/ml) and Malondialdehyde levels (1.63±0.20 – 3.72±0.53 Vs. 0.79±0.10 units/mg protein) in all tested groups versus unexposed. Conversely, Total thiol content (1.96±0.33-0.38±0.10 Vs. 5.31±0.31 units/mg protein) Glutathione-S-transferase (2.20±0.30-1.01±0.27 Vs. 4.31±0.24 units/mg protein), Catalase (171.70±50.13-104.34±9.56 Vs. 368.00±7.56 units/mg protein) and Superoxide dismutase (3.18±0.29-1.44±23 Vs. 5.34±1.35 units/mg protein) activities all decreased significantly (P<0.05) as concentrations increased in all test groups versus unexposed.

Conclusion: Overall, our results suggest that the mechanism of EFVb-HAART toxicity involves sterile immune response observed as increased protein contents, oxidative stress evidenced by depleted oxidative stress-antioxidant parameters, and possible free radical generation shown by increased malondialdehyde levels. Human-based studies are required for deeper understanding of these EFVb-HAART toxicities. 

Keywords:
Glutathione-S-transferase, highly active antiretroviral therapy, superoxide dismutase, Malondialdehyde

Article Details

How to Cite
Iorjiim, W. M., Omale, S., Bagu, G. D., Gyang, S. S., Alemika, E. T., & Etuh, M. A. (2020). Highly Active Antiretroviral Therapy Depletes Some Antioxidant Parameters and Increases Free Radical Generation in Drosophila melanogaster. Journal of Advances in Medical and Pharmaceutical Sciences, 22(2), 41-51. https://doi.org/10.9734/jamps/2020/v22i230158
Section
Original Research Article

References

Awodele O, Popoola TD, Idowu O, Bashua BM, Awolola NA, Okunowo WO. Investigations into the risk of reproductive toxicity following exposure to highly active anti-retroviral drugs in rodents. Tokai J Exp Clin Med. 2018;43(2):54-63.

Ngondi JL, Oben J, Forkah DM, Etame LH, Mbanya D. The effect of different combination therapies on oxidative stress markers in HIV infected patients in Cameroon. AIDS Res Ther. 2006;3(1):1-7.
DOI: 10.1186/1742-6405-3-19

Smith RL, de Boer R, Brul S, Budovskaya Y, van der Spek H. Premature and accelerated aging: HIV or HAART? Front Genet. 2013;3:1-10.
DOI: 10.3389/fgene.2012.00328

Savasi V, Oneta M, Laoreti A, et al. Effects of Antiretroviral therapy on sperm DNA integrity of HIV-1-Infected men. Am J Mens Health. 2018;12(6):1835-1842.
DOI: 10.1177/1557988318794282

Iorjiim WM, Omale S, Etuh MA, Bagu GD, Ogwu SO, Gyang SS. EFV b-HAART increases mortality, locomotor deficits and reduces reproductive capacity in Drosophila melanogaster. J Adv Biol Biotechnol. 2020;23(1):26-38.
DOI: 10.9734/JABB/2020/v23i130136

Panacek A, Prucek R, Safarova D, et al. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol. 2011;45(11):4974-4979.
DOI: 10.1021/es104216b

Abolaji A, Kamdem JP, Farombi O, Batista J, Da Rocha T. Drosophila melanogaster as a promising Model organism in toxicological studies: A mini review perfil fitoquímico e atividades biológicas de óleos essenciais View project in silico studies view project. Arch basic Appl Med. 2013;1(6):33-38.
Available:https://www.researchgate.net/publication/259184998

Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology. 2015;9(3): 396-403.
DOI: 10.3109/17435390.2014.940405

Ristow M, Schmeisser K. Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response. 2014;12(2):288-341.
DOI:10.2203/dose-response.13-035.Ristow

Circu ML, Aw TY. Reactive oxygen species, cellular redox systems and apoptosis. Free Radic Biol Med. 2010;48(6):749-762.
DOI: 10.1016/j.freeradbiomed.2009.12.022

Dias V, Junn E, Mouradian MM. The role of oxidaive stress in Parkinson’s disease. J Park Dis. 2008;23(1):1-7.
DOI: 10.1038/jid.2014.371.

Sies H. Oxidative stress: From basic research to clinical application. Am J Med. 1991;91(3C): S31-S38.

Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000;28(4):625-635.
DOI: 10.1016/S0891-5849(99)00275-0

Lushchak VI. Glutathione homeostasis and functions: Potential targets for medical interventions. J Amino Acids. 2012;2012:1-26.
DOI: 10.1155/2012/736837

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26.
DOI: 10.1007/s12291-014-0446-0.

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19.
DOI: 10.1097/WOX.0b013e3182439613

Abolaji AO, Kamdem JP, Lugokenski TH, et al. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol. 2015;5:328-339.
DOI: 10.1016/j.redox.2015.06.001.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126.
DOI: 10.4103/0973-7847.70902

Angelucci F, Baiocco P, Brunori M, Gourlay L, Morea V, Bellelli A. Insights into the catalytic mechanism of glutathione S-transferase: The lesson from Schistosoma haematobium. Structure. 2005;13(9):1241-1246.
DOI: 10.1016/j.str.2005.06.007.

Alexander, EM, Aguiyi JC, Ogwu, OS, et al. The in vivo antioxidant protective activity of Mangifera indica cold aqueous leaf extract in Drosophila melanogaster. J Adv Biol Biotechnol. 2019;22(2):1-7.
DOI: 10.9734/jabb/2019/v22i230108

Misra HP, Fridovich I. Inhibition of superoxde dismutase by azide. Arch Biochem Biophys. 1978;189(2):317-322.
DOI: 10.1016/0003-9861(78)90218-7

Varshney R, Kale RK. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes formed , increased with radiation dose . The presence of calmodulin antagonists ions and was restored on addition of EDTA .Howeve calmodulin antagonists considerab. Int J Radiat Biol. 1990;58(5): 733-743.
DOI: 10.1080/09553009014552121

Khalaf NA, Shakya AK, Al-Othman A, El-Agbar Z, Farah H. Antioxidant activity of some common plants. Turkish J Biol. 2008;32(1):51-55.

Aniagolu MO, Ugwuene FO, Ikegwuonu IC. The effects of highly active antiretroviral therapy on the activities of some liver enzymes and the concentrations of protein and albumin in HIV positive patients in Nsukka South East Nigeria. Int J Heal Sci Res. 2017;7(7):67-71.

Shaukat Z, Liu D, Gregory S. Sterile inflammation in drosophila. Mediators Inflamm; 2015.
DOI: 10.1155/2015/369286

Prakash M, Shetty MS, Tilak P, Anwar N. Total thiols: Biomedical importance and their alteration in various disorders. Online J Heal Allied Sci. 2009;8(2):1-9.

Hulgan T, Morrow J, D’Aquila RT, et al. Oxidant Stress Is Increased during treatment of human immunodeficiency virus infection. Clin Infect Dis. 2003;37(12):1711-1717.
DOI: 10.1086/379776

Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress and antioxidants: A review. J Biochem Mol Toxicol. 2003;17(1):24-38.
DOI: 10.1002/jbt.10058

Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192-208.
DOI: 10.1007/s00018-003-3206-5

Mondal D, Pradhan L, Ali M, Agrawal KC. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: Exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol. 2004;4(3):287-302.
DOI: 10.1385/CT:4:3:287

Adikwu E, Bokolo B. Antioxidants as recipes for efavirenz-induced liver damage: A study in albino rats. J Contemp Med Sci. 2018;4(1):39-44.
DOI: 10.22317/jcms.03201809

Bakirel T, Bakirel U, Keleş OÜ, Ülgen SG, Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol. 2008;116(1):64-73.
DOI: 10.1016/j.jep.2007.10.039

Arulselvan P, Subramanian SP. Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic β-cells in experimental diabetes in rats. Chem Biol Interact. 2007;165(2):155-164.
DOI: 10.1016/j.cbi.2006.10.014

Jareo EJ, Romá J, Romero B, et al. Serum malondialdehyde correlates with therapeutic efficiency of high activity antiretroviral therapies (HAART) in HIV-1 infected children. Free Radic Res. 2002;36(3):341-344.
DOI: 10.1080/10715760290019363

Xue P, Zhao X, Qin M, Shi Z, Zhang M, Gu W. Transcriptome analysis of male Drosophila melanogaster exposed to ethylparaben using digital gene expression profiling. J Insect Sci. 2017;17(4):1-9.
DOI: 10.1093/jisesa/iex050

Carmona ER, Inostroza-Blancheteau C, Rubio L, Marcos R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health. 2016;32(12):1987-2001.
DOI: 10.1177/0748233715599472

Adaramoye OA, Adewumi OM, Adesanoye OA, Faokunla OO, Farombi EO. Effect of tenofovir, an antiretroviral drug, on hepatic and renal functional indices of Wistar rats: Protective role of vitamin E. J Basic Clin Physiol Pharmacol. 2012;23(2):69-75.
DOI: 10.1515/JBCPP.2011.0042

Sundaram M, Saghayam S, Priya B, et al. Changes in antioxidant profile among HIV-infected individuals on generic highly active antiretroviral therapy in southern India. Int J Infect Dis. 2008;12(6):e61-e66.
DOI: 10.1016/j.ijid.2008.04.004

Devasagayam TPA, Tilak J, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. Journal of Association of Physicians of India. 2004;52:794– 804.
Available:https://doi.org/10.1016/S0300-483X(03)00149-5